
 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.45128 601

Software Improvement Model for small scale IT

Industry

T.B.Patil
1
, S.D.Joshi

2
, R.M.Jalnekar

3
, Manjusha Joshi

4

M.Tech Student,

Department of Computer Science, Bharati Vidyapeeth Deemed University,

College of Engineering, Pune, India
1

Professor, Bharati Vidyapeeth Deemed University, College of Engineering, Pune, India
2

Director Vishwakarma Institute of Technology,Pune
3

Research Scholar, BVDUCOE Pune
4

Abstract: Over the years, the software development has evolved from just being science to a combination of ―art‖ and

―science‖. Today’s software progress environment, follow lifecycles with phases that are either sequential or parallel in

execution. The software process is a set of actions, methods and transformations that people use to develop and maintain

software and the associated products, for example: product plans, blueprint, code, test cases and user manuals. This paper

presents a methodology for assessing software processes which assist the activity of software process improvement in small

organizations. There is an effort to address issues such as the fact that: (i) process assessment is expensive and typically

requires major company resources and (ii) many light assessment methods do not provide information that is detailed

enough for diagnosing and improving processes.

Keywords: Design Phase, Implementation Phase, KPA, Planning Phase, Security Phase, Six Sigma, Software Metric

I. INTRODUCTION

Software process improvement and measurement is becoming

one of the main methods to solve ―software crisis‖. Software

Process Measurement (Software Metric) defines the process of

software development, collects and analysis data, that is

quantization process of continuous improvement, is important

basis of making plan, executing process, implementing control.

SIX SIGMA
[1]

Six sigma strategies were developed by Motorola in the early

1990s. Six Sigma is based on statistical approach which does

the improvement by historical data and by calculation of

mathematical formulas. The goal of the six sigma is to detect

the defect and reduce the defect. [2] Six sigma means a

company tries to make ―error-free product 99.9997% of the

time a minuscule 3.4 errors per million opportunities‖. SIX

SIGMA has six stages and reduces the defect step by step.

Six Sigma is usually related to the magic number of 3.4 defects

per million opportunities.

Limitations of Six Sigma: The limitation of Six Sigma can be

given as following.

Six Sigma is a statistically-based process

improvement methodology.

Often it is very difficult for small companies to take

employees away from their regular duties in order to be trained

in Six Sigma. If employees are not available to give their

services, the company loses money due to a reduction in

productivity.

Six Sigma focuses on prioritizing and solving specific

problem which are selected based on the strategies priorities of

the company and the problems which are causing the most

defects.

In this project we have tried to make a simple yet really

efficient tool which can be easily used by the developers

without any formal training. This will reduce the extra burden

which Six Sigma forced on companies.

We have mainly focused on four important phases of software

development life cycle:-

i. Planning Phase

ii. Design Phase

iii. Security Phase

iv. Implementation Phase

For each of the above written phases we have designed a

simple GUI for testing. Based on the quality questions,

answered by the tester KPA (Answering Criteria Percentage) is

calculated using an algorithm

KPA
[3]

 KPA stands for Answering Criteria Percentage which

calculates the average success percentage of each phase.

 KPA = (No. of answering per criteria)

 (No. of questions – No. of N/A answer)

*NOTE
Number of answer of ―NO‖ or ―PARTIALLY‖ will be treated as areas for improvement.

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.45128 602

On the basis of the KPA actual suggestions and scope of improvement will be calculated

II. PLANNING PHASE

The Planning Phase is the second phase in the software life

cycle. It involves creating of a set of plans to help guide your

team through the execution and closure phases of the project.

The plans created during this phase will help you to manage

time, cost, quality, risk and issues. They will also help you

administer workforce and external suppliers, to make sure that

you deliver the project on time and within budget.

Create Project Resource Financial Quality

 Plan Planing Planing Planning

 Comm Acceptance Confg.Mgmt Risk Mgmt

Planning Planning Planning Planning

Procurement Phase

 Planning Review

 (Basic objective of Planning Phase)

In our project we have emphasizes on all of the objective of

this phase. Suggestion will be given on the scope of

improvement.

Vision/Scope of Planning Phase

 Technology Validation Complete

 Functional Specifications Baselined
[4]

 Master Project Plan Baselined

 Master Project Schedule Baselined

 Development/Test Environment Set Up

III. DESIGN PHASE

The Design phase is when you build the plan for how you will

take your project through the rest of the SDL process—from

implementation, to verification, to release. at some stage in

Design phase you establish best practices to follow for this

phase by way of functional and design specifications, and you

carry out risk analysis to identify threats and vulnerabilities in

your software.

During the Design Phase, the system is designed to satisfy

the requirements identified in the earlier phases. The

requirements identified in the Requirements Analysis Phase

are transformed into a System Design Document that

accurately describes the design of the system and that can be

used as an input to system development in the next phase.

OBJECTIVES

 Transformation of all requirements into

specifications covering all aspects of the system.

 Review and planning for security risks.

 Approval to growth of the Development Phase.

 Concurred-Upon

Requirements Analysis

 Defination of Preliminary

 Problems Design Concept

 Feasibility

 Studies

 Internal Environment

 Analysis and Interface Analysis

 Design and Design

 Component System Test

 Design Design

 Final Design Concurrence

 Document

III. SECURITY PHASE

It is the most important phase of a SDLC. Your project must be reliable in order to obtain the trust of your users.

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.45128 603

List of attacks that can harm a software

I. Surface Reduction Attack

Attack surface reduction is closely aligned with

threat modelling, although it addresses security issues from a

slightly different perspective. Attack surface decrease is a

means of dropping risk by giving attackers less opportunity to

exploit a potential weak spot or vulnerability. Attack surface

fall encompasses shutting off or restricting access to system

services, applying the principle of least benefit, and employing

layered defines wherever possible.

II. Threat Modelling

Threat modelling is used in environments where there is

meaningful security threat. It is a practice that allow

development teams to consider, manuscript, and discuss the

security implications of designs in the context of their

planned operational environment and in a structured fashion.

Threat modelling also allows consideration of security issues

at the component or application level. Threat modelling is a

team exercise, surrounding program/project managers,

developers, and testers, and represents the primary security

analysis task performed for the duration of the software

design stage.

 Security Security Security Testing,

Requirements Architecture Design Penetration Testing,

 Reviews Secure Configuration

 Threat Modeling Static &Dynamic

 Analysis, Secure

 Code Reviews

Requirements Design Coding Integration Validation Production

 (Security in the SDLC process)

Use Approved Tools

All development teams should define and publish a list of

approved tools and their associated security checks, such as

compiler/linker options and warnings. This list should be

accepted by the security advisor for the project team. In

general, development teams should strive to use the latest

version of approved tools to take advantage of new security

analysis functionality and protections.

Deprecate Unsafe Functions

Many commonly used functions and APIs are not secure in the

face of the current risk environment. Project teams should

explore all functions and APIs that will be used in conjunction

with a software development project and prohibit those that are

determined to be unsafe. Once the barred list is determined,

project teams should use header files (such as banned.h and

strsafe.h), latest compilers, or code scanning tools to check

code (including legacy code where appropriate) for the

existence of barred functions, and replace those barred

functions with safer alternatives.

Static Analysis

Project teams should perform static analysis of source code.

Static investigation of source code provides a scalable

capability for security code review and can help ensure that

secure coding policies are being followed. Static code

investigation by itself is generally insufficient to replace a

manual code examination. The security team and security

advisors should be aware of the strengths and weaknesses of

static analysis tools and be prepared to augment static analysis

tools with other tools or human review as appropriate.

IV. IMPLEMENTATION

 The Implementation phase is when the end user of your

software is foremost in your mind. In this phase you make the

documentation and tools the customer uses to make informed

decisions about how to deploy your software securely. To this

end, the Implementation phase is when you establish

development best practices to detect and remove security and

privacy issues early in the development cycle.

OBJECTIVES

 System deployment

 Training on the system

GOALS

The purpose of the Implementation Phase should is to deploy

and enable operations of the new information system in the

production environment.

ROLES

The following personnel contribute in the work activities

during this phase:

 Agency CIO

 Project Sponsor

 Executive Sponsor

 Project Manager

 Development Team

The major steps involved in this phase are:

 Acyuisition and Installation of Hardware and

Software

 Conversion

 User Training

 Documentation

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.45128 604

 Implementation Teams

 Select Accreditation Body

 Develop Documentation

 Training

 Internal Audit & Corrections

 Pre-assessment & Corrections

 Accreditation Audit

 (Implementation Phase)

V. CONCLUSION

 Thus, in this paper we have defined and explained the

software process improvement model which consists of the

three basic phases i.e. planning, design, security,

implementation. In this model we have calculated the KPA on

the basis of quality questions and the suggestions for changes if

any are given, taking out the weak areas that needs attention.

The overall result of each phase is depicted in the form of

graph.

VI. FUTURE WORK

In future we will be working on the evaluation of codes in a

much optimized way. We will integrate a compiler which will

scan the fragment of codes and on the basis of its analysis

we will generate a log file which will be indicating the areas of

improvement. Assessment will be done on the basis of time

and space complexity.

REFERENCES
1) Mamta Shelpar, Sona Malhotra,―Software Process Improvement Model‖,

Iternational Journal of Advanced Research in Computer Science and

Software Engineering, June 2013.

2) D.F.Rico, ―ROI of Software Process Improvement‖. J.Ross Publication

2004.

3) Ministry of Communications and Information Technology, ―Software
Process Improvement Standards& Specification‖ NIC/SD/SPISS

V1.0:2009.

4) Ministry of Communications and Information Technology, ―Software
Process Improvement Standards& Specification‖ NIC/SD/SPISS

V1.0:2009.

5) Ruth Klendauer, Axl Hoffiman, Jan Macro Leimeister and Marina
Berkovich, Helmut Krcmar, ―Using the IDEAL Software Process

Improvement Model for Implementation of Automotive SPICE,‖ 2012
IEEE CHASE 2012, Zuric.

.

	I. Introduction

